1198 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 4, APRIL 2002

Electromagnetic Scattering by Metallic Holes and Its
Applications in Microwave Circuit Design

Ali Zeid, Associate Member, IEEEBNd Henri Baudrandsenior Member, IEEE

Abstract—The problem of arbitrarily incident plane-wave scat-
tering from rods structures of thick conducting plates arranged
with two-dimensional (2-D) periodicity has been examined. The
square approximation as well as truncated-square approximation
of circular cross sections is used in this study. The impedance of v A z
cascaded screens and the reflection coefficient is calculated using
the multimodal variational method for both TE- and TM-polarized |
incident electric field. The 2-D periodic structure of holes described i
in this paper can be used for the purpose of designing new guiding
microwave structures. A transverse resonance method is applied to
solve this problem. The convergence behavior of the technique has b
also been examined. The numerical results of the reflection coeffi-
cient, surface impedance, and dispersion curves are presented.
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|. INTRODUCTION Fig. 1. Geeometry of metallic plates (cascaded arrangement) { mm, L =
0.05 mm, 8).
ERIODIC screens are used in many applications for sci- )
ence and engineering over a wide range of the electroma@atallic rods disposed periodically in cascade have been
netic spectrum. An infinite array of metallic rods or strips, Sucfieated. A metallic slab of square or truncated square cross-sec-
as illustrated in Fig. 1, forms a useful model for the analysigyn approximates each metallic slab of a circular cross section.
of many practical microwave structures such as filters, Iensgsy using the truncated square approximation, the difference
and artificial dielectrics [1]. A knowledge of the reflection angyerween the origin cross section and this approximation is
transmission coefficients at the array surface is required in e%-‘ﬁlimized. The surface impedanZe; and the reflection coef-
of these applications. . . ficient 51, are computed by the multimodal variational method.
The problem of scattering by a two-dimensional (2-D) peria comparison between the two approaches, in the case of a TE
odicarray of rectangular plates was investigated be@Qit.[2].  field, has been illustrated for square and truncated square cross
They used the point matching method to solve the integral equ@ctions. The study of the dispersion curves between two grids
tion for the unknown current on the plate. The solution given {§ periodically arranged metallic holes allows the fabrication
restricted to the case of narrow plates arranged in a rectang@fithe waveguide. In Sections 11-VI, theoretical background,
lattice with a normal incident plane wave. The complementaggcylation of the impedance matrix, determination of the trial
problem of scattering by a conducting screen periodically p&{inctions, the equivalent-circuit representation, and the appli-
forated with apertures was treated by Kieburtz and Ishimaru [8}tion of the multimodal variational method are demonstrated.
by the variational method. The accuracy of the variational 30'A‘waveguide design between two grids of periodically arranged

tion depends on the ability to choose an appropriate trial fungretallic holes is then illustrated. Finally, the numerical results
tion. Accomplishment by the cascade connection of componegisy conclusions are explained.

as characterized by their scattering parameters, surfaces, and
dielectric layers are treated as distinct elements with the cas-
cade connection of their scattering parameters found from stan- ] ) ) o
dard microwave analysis extended to field quantities [4]. Rubin 1€ problem under consideration consists of an incident
examined the effect of thickness on periodic structures by difane wave on metallic plates, as shown in Fig. 2. The metallic
alyzing the scattering from a one-dimensional (1-D) array §tabs have infinite lengths anq space regulquty. .The axis of
thick bars [5] and a 2-D array of thick patches [6] since the thicll/ates are parallel toy and periodic in thexz-direction. The
ness of the structure stemmed from that of the patch itself. Period in thez-direction isa. The incident plane wave has a
In this paper, the problems of electromagnetic isolation bBfOPagation vector making an angle ffwith respect to the

tween elements of microelectronic circuits have been studigg@xis- The electromagnetic fields must satisfy the require-
ments imposed by Floquet's theorem. The plane wave in the

transverse directions may be TM or TE. The time dependence

Il. THEORETICAL BACKGROUND
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Fig. 3. Discontinuity plane of square metallic plaie (= 1 mmb =
Fig. 2. Geometry of the problem (periodic:= 1 mm). 0.1 mm, ).

When the magnetic and electric walls are introduced, the

The propagation of the wave is independent ofghgirection even and odd solutions for the reduced driving point imped-

so (1) can be rewritten as ancesZ..., and Z,4q can be obtained in a manner similar to
by, = coiferemikes @ [1]; the resultant two-port network (7) is then characterized by
_ Zeven + Zodd _ Zeven - Zodd
where the associated transverse propagation constant is Zu = 9 andz;, = T ®)
o Finally, the scattering matrix of the metallic holes can be ob-
Bz = kosin + — (3) tained by the following expression:
S=(z+u)"1z—u) 9)

andky = w./eopo IS the free-space wavenumber ands a
constant, which can be evaluated by using the normallzatlmere[z] is the reduced impedance matrix gnfis the identity
condition. matrix

The scalar mode functiong,, must satisfy the Helmholtz

equation. With proper boundary conditions, the propagation IV. MICROWAVE SCATTERING BY SQUARE PLATES

constant in the:-direction can be defined as
The choice of a complete trial function is based on the electro-

b — VES — (82)2, whenk? > 32 ) magnetic field into region Il [12], as shown in Fig. 3. The struc-
) —iv(Bz)? — K2, whenk3 < 2. ture of this region is determined by electric wallszat= b/2
_ o andatz = a — b/2.
Therefore, the TE field for the TE mode is written as follows: By using the boundary conditions of the structure, the trial
1 function in case of the TE mode can be written as
E. = __C—j(kg sin@—l—?nﬂr/a)mc—jkzz' (5)
R By =) " sin PT% ks (10)
Y a—0b a—0b

and also for the TM modes as

The TE field of the TM mode can be also written as

1 L .
E = _e—](kg sul&—l—?nw/a)ace—jk;z. 6 t, o
TV © E, = cos LI omiksz (11)
a—>b a—>b
where
I1l. | MPEDANCE MATRIX OF METALLIC HOLES .
. th =1, ifp=20
To calculate the impedance matrix, either an electric or mag- n te =2, ifp#£0

netic wall must be imposed at the center of the slab. When the ) o ) ) )
discontinuity problem has geometrical symmetry, the solutigif'd Where: is the period in: andb is the dimension of square

can be split into even and odd parts by introducing magnef?@te' ) i o ,
and electric walls, respectively, at the symmetry plane, as de-The generalized trial quantity in the equivalent network repre-

scribed for the thick iris resolution by Collin [1] and Rozzi [9],S€Ntation of the boundary conditions are required on the overall
[10], respectively. dome_un as V|r_tual adjustable sources [11]-[14]. The domaln qf
The relationship between tangential electric fields and currdRE trial guantity, the boundary conditions on a plane of disconti-
densities infinitely close to two surfaces is [11] nuity, _the equwalent.n.e_twork reprgsentatlop ofthe dlscqnt|nU|Fy
domain, and the definition of the trial quantity are established in
E, Zi Zio Ji [12], [13], and [15]. Here, the trial function chosen is the elec-
{EJ = {Zm le} ) |:J2:| () tric field E. The representation of modal current source in the
current density/, of the fundamental mode in the waveguide is
whereF is the electric field and/ is the current related to the presented in [12], [13], and [15]. Let us considér the admit-
magnetic field byJ; = H; x n; [12]. tance operator that describes the contribution of the evanescent
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lowest cutoff frequency. The other modes are “localized” in the
discontinuity. All ports corresponding to localized modes have
been terminated by their modal characteristic admittance [9].
By utilizing the multimodal variational formulation [18], [19],

» B ; E - ; thg formulation of the particular problem (15) and (16) can be
‘ : written as
Zr = ALY Ay (17)
wherek is considered as a number of accessible mode$¥ahd
b) @ is the admittance operator of square metallic plates given by
i . oo ) ) . - N
Fig. 4. Equivalent circuit of the configuration of discontinuity of square plate.
(a) Representation of the discontinuity domain. (b) Representation of modal [Y]qp = Z <9p7 fn>Y1n <fn7 9p> + Y25qp (18)
current source in a network. n=k+1

mode on the current density, add, the admittance operator
of a short or open circuit according to the symmetric or anti-
symmetric plane [13], [16], [19]. Therefore, the equivalent cir-

and

At — <f07.91> <f07.gp>

cuit of the discontinuity for square plates in Fig. 3 is shown in

Fig. 4. The solution has been derived by applying analogies ofFinally, the expression of the impedance matrix (8) of the
Kirchoff's and Ohm'’s laws to the equivalent network represeitbick plates can be expressed[#g]. The scattering matrix of
tation of Fig. 4. A matrix form can be deduced as follows:

o 1 Jo
-1 "h+Ys FE
where the right-hand side contains the real and virtual sourcegCompared to the generalized scattering matrix method

and the left-hand side contains the dual quantities. By applyil@SMwm), the advantage of our approach resides in using the
Galerkin’s method to (12), the following matrix equation can bgotions of structures involving several cascaded discontinuities

K

written:
0
A
Vo _ | —~—
[0}_ —(91, fo)
__<g(17f0>

At

N

e

(fo,g1) -+ (fo,9p)

(9 (Vi + Y2, ) 9

N

[X]

whereVy = Ey fo, Io = Jo fo, and E is replaced by

E:ZXP'QPv (9p, ) =0,
p

for all p.

(12)

(13)

(14)

the plates is then obtained by the following expression:
Spo= (zr + 1) (2 — u) (19)

wherez; is the reduced impedance ands the unit matrix.

is obtained by chaining th&-matrix of every discontinuity
according to the well-known formulas [20]. While the GSMM
uses matrices whose dimensions depend on the number of con-
sidered mode in every discontinuity, the variational approach
involves matrices with much smaller dimensions because it
considers only the number of accessible modes. Since the
localized modes are taken into account in a summation, it
is possible to use a large number of them with a reasonable
computation time [19].

V. MICROWAVE SCATTERING BY TRUNCATED SQUARE PLATES
The second case of study is the truncated square form. This

The last three equations can be found in [11], [14]-[16]. Erofjrangement is close to the circular form. There is very little
the matrix (13), an impedance can be deduced as

Z=A'Y]"'4

where[Y] is the admittance operator of square metallic plat

which is given by

N

Vg = Z(gqva> VYin(fn, gp) + Y2 - bgp

n>1

where

6(11):{

In the plane of the discontinuity, an infinite number of modes
are excited, but in the case of several cascaded discontinuities,

0, ifp#q
1, if p=gq.

(15)

(16)

difference between the two forms. Due to this approximation,
there are two discontinuities. To find the trial function of the first
discontinuity(p; ), it must be put on electric wall at = b/2

gandz = a — b/2. For the second discontinuity.), the trial

function can be determined with electric wallsrat= b/2 + d
andx = a — (b/2 + d), as shown in Fig. 5.

By applying the boundary conditions as in the previous case,
the trial functions for the TE and TM modes of the first disconti-
nuity will have the same forms as in (10) and (11), respectively.
For the second discontinuity, the trial functions can be expressed

as
t TIL 1
E,=— ] 2 sin 2T ik (20)
a—cC a—cC

tn ik s
E, = cos PTE o—ik:= (21)

only a few of them are “seen” by the neighboring discontinu- a—c a—c
ities. These are the so-called “accessible” modes and havewierec = b + 2d.
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periodic walls

bl2+d ab-d |

VI. CASCADED DISCONTINUITIES ANALYSIS

In general, the cascaded metal plates and dielectric slabs are
used to obtain the desired transmission characteristics.

The calculation of the cascaded discontinuities in Fig. 1 was
done by [21]. A matrix of a length of liné for an nth-order
mode, which permits the passage from the first to the second
slab, is used. The impedance matrix of a length of lifar the
oL y k number of accessible modes is given by

a 2a X
Zm
[Z - coth,]] [ }

Fig. 5. Discontinuity plane of truncated square metallic plate=(1 mm, b = sinh v,

0.072 mm.d = 0.017 mm,6). (2] = Zom (25)
[ - } [Zm- cothv,]
sinh ~,,{
YIS S __ whereZ,, is the impedance of the accessible mokes
In order to assemble various discontinuities that are obtained
5 1 by a chain[>] matrix, two multiple of impedance matric¢s, |

and[Z,] are considered as follows:

Ey Ei|| T | Ea " Ee 7 — [Zall] [Za12] — [le] [Z12]
JO‘@ 0 @EZ [Z] |:[Za21] [Za22]:| 2] |:[Z221] [ZZQQ]:| (26)

where all the sub-matrices that compose the matfiggsand
[Z] can be expressed in terms of the accessible mbdE€bke
[2] matrix is expressed as

)= |2 2] (@7)
Fig. 6. Equivalent circuit of the configuration of discontinuity of truncated [Z21] [Za2]
square plate.
where
The equivalent circuit of the second structure in Fig. 5 is [Z11] =[Za11] = [Za12] - Yas] - [Za21] (28)
shown in Fig. 6. In the same manner, the solution has been de- [Z12] =[Za12] - [Yab] - [Zb21] (29)
rived from the analogy of Kirchoff’'s and Ohm'’s laws applied to _
: : ) . (Z21] =[Zy21] - [Yas] - [Za21] (30)
the equivalent network representation of Fig. 6. The equations
can be written in a matrix form as follows: [Z22] =[Z011] = [Zn2] - Dillb] (%] (31)
£ o 1 0 7 Vol =(1Zaz2] + [Zni]) (32)
S| =|-1 "i+Hu  Hip Eer (22)
J2 0 Hy  Hp+Yy | [ Ee VII. W AVEGUIDE DESIGN BETWEEN TWO GRIDS OF

. ) ) PERIODICALLY ARRANGED METALLIC HOLES
whereH is an admittance operator of a length of line that per-

mits the passage from the first discontinyiiyto the secong,. AN electromag_netic wave of perpendicule}r polarization ar-
Asin the previous case, by considerinthe number of acces- V€S 0n an electric conducting levelat= 0 with an angle of
sible modes and by applying Galerkin’s method, the impedan'@&'denceein- Medium 1 is air. The factor of reflection is worth

matrix can be written as —1 then, and the total electric field in the air is given by [22]
3 E(z,2) = —2j e.E_;(0) sin(f12 sin Oy, - e( 77517 cos0m)
Zi = B[Y] "By (23) (33)

where[Y] is the admittance operator for the truncated squa'?gso’ the magnetic field in medium 1 (air) is defined as

metallic plates, which is written as the following expression: gy, ») = 2F p [—je. cos By sin( B sin Oy )

=z

W o
T o - : +¢, 8D Oy, cOs(B12 510 By )]e(TIFLE 08 Om) (34
Yl = Z <gq1, (Y1 + H11) gp1> - <gq1,H129p2> ) (B )] (34)
k41 It is noted that the boundary condition at the edge of the per-

N N -1 N fect electric conductor in the = 0 plane is indeed satisfied (the
x (<gq2, (H22 + YQ) gp2>> <gq2, H219P1> tangential electric field is equal to zero, and the normal compo-

(24) nent of the induction fielg, - H is zero). In addition, it is noted
that the fields have a periodic dependence,iand these con-

and ditions are also satisfied on all the parallel planes located at a
distancer,,, from the first plane
gt — | Yougu) oo (for ) |  omr
P (frgn) oo (fengpn) Tm = i (39)
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Y on the basis of suitable form of the 2-D Helmholtz equation
for metallic propagation media [24]. Experimental and the-
v4 /’ oretical study of frequency-selective coupling properties of
waveguide-based structures patterned in a metallic photonic
I , crystal is given in [25]. A rigorous analysis is presented for the
b

guiding of wave by a 2-D periodic impedance surfaces [26].

The approximation of a periodic structure by an impedance
surface had been successfully employed for the study of 1-D
periodic structures [27], and this work can be considered as an
extension of the earlier work to the 2-D case.

In this paper, a novel technique in microwave circuit design is
to build an isolation screen using metallic holes, which are peri-
odically arranged in a 2-D grid. Using this approach, the wave-
guide is established between two grids of periodically arranged
© (d) metallic plates, as shown in Fig. 7(a), where these metallic plates

Fig. 7. (a) Geometry of waveguide between two grids of metallic holes{ ~ act as a continuous wall. The waveguide is limited between

20 mm). (b) Rectangular waveguide lengtland heighb. (c) Equivalent circuit _ _ ; ; -
of the waveguide witfY’; is the surface admittance aiig is the admittance of @ = —g andz L gan(_j, thus, it Can_be considered a homoge
the magnetic wall in: = 0. (d) Diagram of continuity conditions. neous waveguide, which has a straight secliénz, and short

circuit atz = g, and the same consideration for the negative di-

Thus, one can place the second metal surface (perfect eledi@flion—=. Let us suppose the electric field at levelis equal
conductor) in one of these planes without disturbing the field§ £ for « > 0. The magnetic field’; on the right-hand side can
The distanceza between these two planes is fixed so one cdif deduced in the same way.&son the left-hand side < 0

\ 23

¥

deduce the angle of incidence as can be deduced. The equation of the continuity forAhéeld is
applied onJ and, therefore, it permits the determination of the
0i, = arcsin < mn ) . (36) dispersion equation. For the waveguide that has a short circuit at
1 aa the distance and directed to the load, one can wilte= H A 77

In order to define this angle, itis necessary that the term betwesmd J=YE.
brackets be less than one, and one must have To examine the continuity conditions at the crossing of the

mr ma mio surface, let us take the general case, which is a current surface
P> — = —— = ——, 37
= B wEolo 2 37 Eyy =F» (39)
The distance between two metallic surfaces must be larger than Hy, — Hyy =J, AR With J; — Jy = — T, (40)

the half-wavelength so that the conditions are satisfied. As ttfﬁe continuity conditions are verified in Fig. 7(c). The arch

electric field is directed along tg, one can place a metallic . - .
. R : . : covered by.J, is not a short circuit, but, in the general case,
plane perpendicular to this direction without disturbing the elec-

g ! an impedance. Let us take again the problem of Fig. 7(a). The
tromagnetic field, in a plane of constant If one places two . o9 .
. . method presented above allows the equivalent circuit shown in
planes ay = 0 andy = b, in addition to the two planes already

placed at: — 0 andx — aa, one forms a rectangular metallicF'g' 7(b). The orientations af; and.J; are now different. The

waveguide [see Fig. 7(b)]. The addition of three metallic planecgntInUIty Of f is expressed, therefore, byk.

does not modify the structure of the fields inside the waveguide, Ji + Ja =0 (41)
which are given by the reflection and transmission of the factors Y, +Y, =0 (42)
[22].

The propagation in the guide is in thedirection and one WhereYi =Y;, - th(y, - g) is the admittance of an open circuit
notes that, if the electric field is perpendicular to this directiort @ magnetic wall in: = 0, andY; is the surface admittance of
the magnetic field has, on the other hand, a longitudinal comgh€ periodically arranged metallic holes.
nent. With this condition, one can say that the mode is TE. TheThe propagation in the guide is in thedirection, and one
propagation constant along the guide is defined by:tdepen- hotes that if the electric field is perpendicular to this direction,

dence of the fields the magnetic field hasfa IoEgit_It_JI(Ejinal(;:omSpobnent. _Conrs]ide:jthfe

transverse resonance for the TE mode. Substituting the admit-
2.

I3 :)\—7r = fA1cos by, = B1y/1 —sin? by, tance of electric mode TE in (42), one obtains
g
Tn
2 ——th(v,9) +Y; =0. (43)
=B, 41— < T ) (38) ‘ Jer _
Praa PutY, = j - X, (X, is the imaginary part of the admittance

where), is the guided wavelength. surface, which depends on the incidence angle), where the as-
Recently, 2-D periodic structures have attracted consideraeiated transverse propagation constant in the metallic holes

attention in the literature, though often under the new narA&@nged periodically is given by

of “photonic-bandgap (PBG) structures [23]. Experimental

data are compared with scattering parameter calculated data

B = kosin @+ 2" andy; — &tg(ﬁn ).
a Wit
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Magnitude of surface impedance in TE mode -6 Magnitude of reflection coefficient in TE modes
x 10

66.4 T : : 0
66.3

-0.2
66.2

-0.4
66.1

[Z111Q
6l -0.61
|S11/dB
65.91 -0.8f
65.81
Bl +
65.71
65.6- -1.21
| +
65.5 -1.4 : v ’ .
4] 10 20 30 40 50 60 0 10 20 30 40 50
Number of modes f(GHz)

Fig. 8. Magnitude of surface impedange, for eight metallic holes cascaded Fig. 9.

in a periodic guide as a function of the number of modes witk 0, f =
10 GHz, and trial functiongp) = (++ 10, - - - 20,—40, x* 50).

Therefore, the equation of dispersion becomes
Butg(Brg) + wpXs =0 (44)
wheref,, = kosin by, sinb;, = f,/ko, and the propagation

160

140

Surface impedance in TE modes

1203

Magnitude of reflection coefficient;; for eight metallic holes
cascaded in a periodic guide as a function of the frequencyéwathd, p = 40,
andn = 40 for (++3,—5, % 11) accessible modes.

120}

constant in the:-direction for a waveguide that is presented in
Fig. 7(a) can be defined as aia |
BN 80
B. = kocosbin = koy/1 — <k—") : (45) 60f

0

Considering the boundary conditions, the TE field can be 40
written as 20¢
E, = Eycos(fz)e™P==. (46) 0

30 40
f(GHz)

10 20 50
VIIl. N UMERICAL RESULTS AND DISCUSSIONS

: ; i9. 10. Imaginary and real parts of the surface impedance for eight metallic
Totest the convergence behavior of the technique, the magﬁﬁies cascaded in a periodic guide for the geometry of square and truncated

tude of the surface impedankﬂlﬂ as a function of the number square approaches versus frequency Witk 0, p = 40, p, = 10, p; = 40,
of modes and trial functions has been studied for square amdr = 40 (square approach — and truncated square approach
truncated square slabs in order to optimize a number of them.
Fig. 8 illustrates the convergence magnitude of the surfaaeed = 0.017 mm, andb = 0.072 mm. The same dimensions,
impedance Z;;| for the structure shown in Fig. 1 in case otrial functions, accessible modes, and number of modes will be
a TE mode for eight square plates in cascade as a functiorused in Section IX.
number of modes. It can be noticed that 40 trial functigms A comparison between the imaginary and real part of the
and 40 modesén) are sufficient to give good convergence. Thisurface impedancg?;; | of square and truncated square slabs
model is applicable by using five accessible modes since finea periodic guide for the same surface are presented in
results of five accessible modes give the same results as mibwe following figures. The presentation of the imaginary and
than five, as shown in Fig. 9. The dimension parameters of theal part of the surface impedance for the eight ranges of the
structure arez = 1 mm, the incident angle i8 ~ 0, and the metallic holes in cascaded Fig. 1, which are approximated by
length of the square metallic slabshis= 0.1 mm. the square and truncated square slabs, is presented in Fig. 10
The convergence magnitude of the surface impedafice for TE modes. The results obtained for the imaginary part of
for the truncated square slabs for eight plates in cascade in the surface impedance of the eight slabs have approximately
TE mode as a function of number of modes is also treated in tthe same values for the two approaches and they increase
same manner. The convergence becomes good for 40 modesvalineh the frequency is increased and the real part of the surface
40 trial functions at the level of the first discontinujty and ten impedance are equal to zero for the two approaches. The eight
trial functions at the level of the second discontinyityfor five ranges in cascade in a periodic guide are sufficient to obtain
accessible modes. On the other hand, for the truncated squged isolation. The magnitude of the reflection coefficient
slabs, the dimension parameters of this structurearel mm, |Sy;| and|S;2| for TE modes versus the operating frequency
incident angle? = 0, and the dimensions of one metallic slabare plotted in Fig. 11 for eight metallic slabs in cascade in



1204 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 4, APRIL 2002

Reflection and transmission coefficients in TE modes The imaginary part of the surface admittance
0 T -0.005 . ; . T
[Sul
-0.011 E
-20+
-0.015} E
5 40+ -0.021 k
3 -0.025} :
= Ys$S
%60 *".0.03} .
-0.0351
-80r
-0.04F
-100 -0.0451
-0.051
-120 : .
-0.055 ’ ! L .
0 50 f(GHz) 100 150 0 20 40 60 80 100

Arcsin(ﬁn /ko)indeg:rees

Fig. 11. Magnitude of reflection and transmission coefficients for eight o ) ) . .

metallic holes cascaded in a periodic guide for the geometry of square dri@l- 13. Variation of the imaginary part of the surface admittance for eight

truncated square approaches versus frequencyfwith0, p = 40, p, = 10, Mmetallic holes disposed in cascade in a periodic guide with the incident angle

pp = 40, andn = 40 (square approach —, and truncated square approaéh Which present the relation of the constant of propagatiomvith &, inside

k). the waveguide design between two grids of periodically arranged metallic holes,
as in Fig. 7(a).

The imaginary part of the surface admittance

Magpnitude of the dispersion curve

0.9f
0.8F
0.7¢

0.6f
[Ke/Ko

04 . . . :
0 10 20 30 40 50 ol

f(GHz) 0 10 20 30 40 50
f(GHz)

Fig.12. Imaginary part of surface admittance for eight metallic holes disposed ] ] ) ]
in cascade in a periodic guide versus the frequency for an incident ghgie ( Fig. 14. Magnitude of dispersion curve for geometry of Fig. k) and
0— andf x 90 x* *x). Fig. 7(a) — versus frequency.

a periodic guide. The comparison shows that the magnitutien of arcsin(43,,/ko). In this figure, the amplitude of the imag-

of the reflection coefficient increased when the frequency imary part of the surface admittance increased With/ko).
creased and, on the other hand, the transmission coefficientinem (45), the magnitudes of the dispersion curve for Fig. 7(a)
creased with frequency. From this result, the isolation is satigersus the operating frequency is plotted in Fig. 14. The disper-
fied for replacing the continuous structure by the metallic holeson curves represent the propagation constants, and the cutoff
arranged periodically (Fig. 1) for frequencies less than 50 GHzequencies of the waveguide for the fundamental mode. Also in
For this domain, the imaginary part of the surface admittancetfss figure, the dispersion curves represent the propagation con-
plotted for the incident angles of @nd 90, as in Fig. 12. There- stant for a rectangular waveguide [see Fig. 7(b)], which has the
sults obtained for the imaginary part of the surface admittancesame proportion (dimensions that verify the condition (37) for
the eight slabs are approximately the same values for the twothe incidence angle). The comparisons between the two curves
cident angles. Also, the comparison between the reflection cogive approximately the same values, which allows one to build a
ficient for the two incident angles gives less than 1 dB in that desaveguide from the metallic holes arranged periodically. Fig. 15
main. The calculation of the dispersion curve in the waveguidehows the magnitude of transmission coefficient obtained in the
which is built from the metallic holes arranged periodically, itheoretical and experimental case for the first propagating mode
presented in (44). This equation give the surface admittance tlmathe waveguide, which is made up between two grids of pe-
is dependent on the constant of propagation inatfdirection riodically arranged metallic plates [see Fig. 7(a)]. By consid-
(8,,) and the free-space numb@y ); for this reason, Fig. 13il- ering an equivalent waveguide of widtlx = 2 cm, the di-
lustrates the imaginary part of surface admittahigc@as a func- mension parameters of the theoretical studysase 5 mm and
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Fig.15. Magnitude of transmission coefficient for geometry of Fig. 7(a) versig. 17. Magnitude of reduced,. for a circle, square, and truncated square
frequency (theoretical — and experimentak). metallic obstacle in a rectangular guide versus frequency with: circle diameter
D =2mm,b = 1.77 mm for square, ant = 1.27 mm andd = 0.3 mm for
a truncated square for TE modes.
Magnitude of transverse electric field

1 i A N Ea—
09t “g;)’{y‘eff%ﬁvem@h has the same surface % = 2 mm). For this structure, it can
08k be noticed that ten trial functions for all discontinuity, and 25
' modes are sufficient to give good convergence. The dependence
07y of the magnitude of the transfer impedance versus frequency for
067 the TE mode of the three structures is shown in Fig. 17. From
By 5 | this figure, one can notice that the three curves have the same
shape and approximately the same values for circular and trun-
041 cated square forms. A very good agreement with the literature
0.3¢ results given in [28] is demonstrated. In a periodic waveguide,
02¢ the accuracy of the analysis is demonstrated by a comparison
oal between theoretical results and experimental ones for via-holes
with a circular cross section of the same surface [29].

-0.005 0 0.005 0.01 0.015
Dimension of the guide in X

-0.01
IX. CONCLUSIONS

Fig. 16. Varie_ttion oftheTE_fieIdforgeometryofFig.7(a)for_thefl_JndamentaI The problem of arbitrarily incident plane-wave scattering
mode (theoreticaloo, experimentakxx, and theoretical effective width —). . . . .

from strip structures of thick conducting plates arranged with

2-D periodicity has been examined in this paper. The square
b = 1.22 mm, and the experimental study are- 5 mm and the approximation, as well as truncated square approximation
diameter of wired) = 1.38 mm. The cutoff frequency in both of circular cross sections has been used in this study. The
cases is conforming, but this frequency does not correspondrimpedance of cascaded screens and the reflection coefficient
a classic waveguide, which has the same width. Fig. 16 depiatas calculated using the multimodal variational method for
the magnitude of the TE field, theoretically and experimen- both the TE- and TM-polarized incident electric fields. The 2-D
tally for the dominanfl'E;, mode inside the waveguide, whichperiodic strip of holes described in this paper can be used for
is built from the metallic holes, arranged periodically. The dthe purpose of designing new microwave guiding structures. A
mension parameters are as noted above. The electric field divassverse resonance method has been applied in order to solve
not begin from zero on the metallic holes because of the valubss problem. A fast rate of convergence with an increasing
of the surface admittance. For this reason, Fig. 16 shows tieémber of modes and trial functions has been demonstrated
magnitude of the electric field, which gives the effective widthfor TE modes of the two cases. The numerical results of the
this width corresponds to the cutoff frequency in Fig. 15. two cases have been compared with each other. The conclusion

A comparison between the reduced transfer impedance mdgawn from this investigation is that the two uses of the wave-

nitude | Z1»| of circle, square, and truncated square cross septide mode of square metallic plates screen or truncated square
tions in a rectangular guide for the same surface are presentestallic plates exhibit the same performance concerning their
in Fig. 17. A study was realized in order to justify the proreflection coefficient. The best surface impedance was obtained
posed suggestion. The dimension parameters of the structar¢he case of a cascaded discontinuities configuration of the
area = 2.2 cm, the length of the square metallic plates isiaveguide. The given close analysis of periodically arranged
b = 1.77 mm, and for the truncated square metallic plates metallic holes showed that this arrangement can be used for the
b = 1.27 mm andd = 0.3 mm (the diameter of the circle thatdesign of new microwave waveguide structures.
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