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Electromagnetic Scattering by Metallic Holes and Its
Applications in Microwave Circuit Design

Ali Zeid, Associate Member, IEEE,and Henri Baudrand, Senior Member, IEEE

Abstract—The problem of arbitrarily incident plane-wave scat-
tering from rods structures of thick conducting plates arranged
with two-dimensional (2-D) periodicity has been examined. The
square approximation as well as truncated-square approximation
of circular cross sections is used in this study. The impedance of
cascaded screens and the reflection coefficient is calculated using
the multimodal variational method for both TE- and TM-polarized
incident electric field. The 2-D periodic structure of holes described
in this paper can be used for the purpose of designing new guiding
microwave structures. A transverse resonance method is applied to
solve this problem. The convergence behavior of the technique has
also been examined. The numerical results of the reflection coeffi-
cient, surface impedance, and dispersion curves are presented.

I. INTRODUCTION

PERIODIC screens are used in many applications for sci-
ence and engineering over a wide range of the electromag-

netic spectrum. An infinite array of metallic rods or strips, such
as illustrated in Fig. 1, forms a useful model for the analysis
of many practical microwave structures such as filters, lenses,
and artificial dielectrics [1]. A knowledge of the reflection and
transmission coefficients at the array surface is required in each
of these applications.

The problem of scattering by a two-dimensional (2-D) peri-
odic array of rectangular plates was investigated by Ottet al.[2].
They used the point matching method to solve the integral equa-
tion for the unknown current on the plate. The solution given is
restricted to the case of narrow plates arranged in a rectangular
lattice with a normal incident plane wave. The complementary
problem of scattering by a conducting screen periodically per-
forated with apertures was treated by Kieburtz and Ishimaru [3]
by the variational method. The accuracy of the variational solu-
tion depends on the ability to choose an appropriate trial func-
tion. Accomplishment by the cascade connection of components
as characterized by their scattering parameters, surfaces, and
dielectric layers are treated as distinct elements with the cas-
cade connection of their scattering parameters found from stan-
dard microwave analysis extended to field quantities [4]. Rubin
examined the effect of thickness on periodic structures by an-
alyzing the scattering from a one-dimensional (1-D) array of
thick bars [5] and a 2-D array of thick patches [6] since the thick-
ness of the structure stemmed from that of the patch itself.

In this paper, the problems of electromagnetic isolation be-
tween elements of microelectronic circuits have been studied.
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Fig. 1. Geometry of metallic plates (cascaded arrangement) (a = 1mm; L =

0:05 mm; �).

Metallic rods disposed periodically in cascade have been
treated. A metallic slab of square or truncated square cross-sec-
tion approximates each metallic slab of a circular cross section.
By using the truncated square approximation, the difference
between the origin cross section and this approximation is
optimized. The surface impedance and the reflection coef-
ficient are computed by the multimodal variational method.
A comparison between the two approaches, in the case of a TE
field, has been illustrated for square and truncated square cross
sections. The study of the dispersion curves between two grids
of periodically arranged metallic holes allows the fabrication
of the waveguide. In Sections II–VI, theoretical background,
calculation of the impedance matrix, determination of the trial
functions, the equivalent-circuit representation, and the appli-
cation of the multimodal variational method are demonstrated.
A waveguide design between two grids of periodically arranged
metallic holes is then illustrated. Finally, the numerical results
and conclusions are explained.

II. THEORETICAL BACKGROUND

The problem under consideration consists of an incident
plane wave on metallic plates, as shown in Fig. 2. The metallic
slabs have infinite lengths and space regularity. The axis of
plates are parallel to and periodic in the -direction. The
period in the -direction is . The incident plane wave has a
propagation vector making an angle ofwith respect to the
-axis. The electromagnetic fields must satisfy the require-

ments imposed by Floquet’s theorem. The plane wave in the
transverse directions may be TM or TE. The time dependence

is omitted. The scalar mode functions can be defined as
in [7] and [8] as follows:

(1)
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Fig. 2. Geometry of the problem (periodic:a = 1 mm).

The propagation of the wave is independent of the-direction
so (1) can be rewritten as

(2)

where the associated transverse propagation constant is

(3)

and is the free-space wavenumber andis a
constant, which can be evaluated by using the normalization
condition.

The scalar mode functions must satisfy the Helmholtz
equation. With proper boundary conditions, the propagation
constant in the -direction can be defined as

when
when

(4)

Therefore, the TE field for the TE mode is written as follows:

(5)

The TE field of the TM mode can be also written as

(6)

III. I MPEDANCE MATRIX OF METALLIC HOLES

To calculate the impedance matrix, either an electric or mag-
netic wall must be imposed at the center of the slab. When the
discontinuity problem has geometrical symmetry, the solution
can be split into even and odd parts by introducing magnetic
and electric walls, respectively, at the symmetry plane, as de-
scribed for the thick iris resolution by Collin [1] and Rozzi [9],
[10], respectively.

The relationship between tangential electric fields and current
densities infinitely close to two surfaces is [11]

(7)

where is the electric field and is the current related to the
magnetic field by [12].

Fig. 3. Discontinuity plane of square metallic plate (a = 1 mm; b =

0:1 mm; �).

When the magnetic and electric walls are introduced, the
even and odd solutions for the reduced driving point imped-
ances and can be obtained in a manner similar to
[1]; the resultant two-port network (7) is then characterized by

and (8)

Finally, the scattering matrix of the metallic holes can be ob-
tained by the following expression:

(9)

where is the reduced impedance matrix andis the identity
matrix.

IV. M ICROWAVE SCATTERING BY SQUARE PLATES

The choice of a complete trial function is based on the electro-
magnetic field into region II [12], as shown in Fig. 3. The struc-
ture of this region is determined by electric walls at
and at .

By using the boundary conditions of the structure, the trial
function in case of the TE mode can be written as

(10)

and also for the TM modes as

(11)

where

if
if

and where is the period in and is the dimension of square
plate.

The generalized trial quantity in the equivalent network repre-
sentation of the boundary conditions are required on the overall
domain as virtual adjustable sources [11]–[14]. The domain of
the trial quantity, the boundary conditions on a plane of disconti-
nuity, the equivalent network representation of the discontinuity
domain, and the definition of the trial quantity are established in
[12], [13], and [15]. Here, the trial function chosen is the elec-
tric field . The representation of modal current source in the
current density of the fundamental mode in the waveguide is
presented in [12], [13], and [15]. Let us consider, the admit-
tance operator that describes the contribution of the evanescent
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(b) (a)

Fig. 4. Equivalent circuit of the configuration of discontinuity of square plate.
(a) Representation of the discontinuity domain. (b) Representation of modal
current source in a network.

mode on the current density, and, the admittance operator
of a short or open circuit according to the symmetric or anti-
symmetric plane [13], [16], [19]. Therefore, the equivalent cir-
cuit of the discontinuity for square plates in Fig. 3 is shown in
Fig. 4. The solution has been derived by applying analogies of
Kirchoff’s and Ohm’s laws to the equivalent network represen-
tation of Fig. 4. A matrix form can be deduced as follows:

(12)

where the right-hand side contains the real and virtual sources
and the left-hand side contains the dual quantities. By applying
Galerkin’s method to (12), the following matrix equation can be
written:

...

(13)
where , , and is replaced by

for all (14)

The last three equations can be found in [11], [14]–[16]. From
the matrix (13), an impedance can be deduced as

(15)

where is the admittance operator of square metallic plates,
which is given by

(16)

where

if
if

In the plane of the discontinuity, an infinite number of modes
are excited, but in the case of several cascaded discontinuities,
only a few of them are “seen” by the neighboring discontinu-
ities. These are the so-called “accessible” modes and have the

lowest cutoff frequency. The other modes are “localized” in the
discontinuity. All ports corresponding to localized modes have
been terminated by their modal characteristic admittance [9].
By utilizing the multimodal variational formulation [18], [19],
the formulation of the particular problem (15) and (16) can be
written as

(17)

where is considered as a number of accessible modes and
is the admittance operator of square metallic plates given by

(18)

and

Finally, the expression of the impedance matrix (8) of the
thick plates can be expressed as . The scattering matrix of
the plates is then obtained by the following expression:

(19)

where is the reduced impedance andis the unit matrix.
Compared to the generalized scattering matrix method

(GSMM), the advantage of our approach resides in using the
notions of structures involving several cascaded discontinuities
is obtained by chaining the -matrix of every discontinuity
according to the well-known formulas [20]. While the GSMM
uses matrices whose dimensions depend on the number of con-
sidered mode in every discontinuity, the variational approach
involves matrices with much smaller dimensions because it
considers only the number of accessible modes. Since the
localized modes are taken into account in a summation, it
is possible to use a large number of them with a reasonable
computation time [19].

V. MICROWAVE SCATTERING BY TRUNCATED SQUARE PLATES

The second case of study is the truncated square form. This
arrangement is close to the circular form. There is very little
difference between the two forms. Due to this approximation,
there are two discontinuities. To find the trial function of the first
discontinuity , it must be put on electric wall at
and . For the second discontinuity , the trial
function can be determined with electric walls at
and , as shown in Fig. 5.

By applying the boundary conditions as in the previous case,
the trial functions for the TE and TM modes of the first disconti-
nuity will have the same forms as in (10) and (11), respectively.
For the second discontinuity, the trial functions can be expressed
as

(20)

(21)

where .
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Fig. 5. Discontinuity plane of truncated square metallic plate (a = 1mm; b =

0:072 mm; d = 0:017 mm; �).

Fig. 6. Equivalent circuit of the configuration of discontinuity of truncated
square plate.

The equivalent circuit of the second structure in Fig. 5 is
shown in Fig. 6. In the same manner, the solution has been de-
rived from the analogy of Kirchoff’s and Ohm’s laws applied to
the equivalent network representation of Fig. 6. The equations
can be written in a matrix form as follows:

(22)

where is an admittance operator of a length of line that per-
mits the passage from the first discontinuityto the second .

As in the previous case, by consideringthe number of acces-
sible modes and by applying Galerkin’s method, the impedance
matrix can be written as

(23)

where is the admittance operator for the truncated square
metallic plates, which is written as the following expression:

(24)

and

VI. CASCADED DISCONTINUITIES ANALYSIS

In general, the cascaded metal plates and dielectric slabs are
used to obtain the desired transmission characteristics.

The calculation of the cascaded discontinuities in Fig. 1 was
done by [21]. A matrix of a length of line for an th-order
mode, which permits the passage from the first to the second
slab, is used. The impedance matrix of a length of linefor the

number of accessible modes is given by

(25)

where is the impedance of the accessible modes.
In order to assemble various discontinuities that are obtained

by a chain matrix, two multiple of impedance matrices
and are considered as follows:

(26)

where all the sub-matrices that compose the matricesand
can be expressed in terms of the accessible modes. The

matrix is expressed as

(27)

where

(28)

(29)

(30)

(31)

(32)

VII. W AVEGUIDE DESIGN BETWEEN TWO GRIDS OF

PERIODICALLY ARRANGED METALLIC HOLES

An electromagnetic wave of perpendicular polarization ar-
rives on an electric conducting level at with an angle of
incidence . Medium 1 is air. The factor of reflection is worth

1 then, and the total electric field in the air is given by [22]

(33)
Also, the magnetic field in medium 1 (air) is defined as

(34)

It is noted that the boundary condition at the edge of the per-
fect electric conductor in the plane is indeed satisfied (the
tangential electric field is equal to zero, and the normal compo-
nent of the induction field is zero). In addition, it is noted
that the fields have a periodic dependence in, and these con-
ditions are also satisfied on all the parallel planes located at a
distance from the first plane

(35)
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(a) (b)

(c) (d)

Fig. 7. (a) Geometry of waveguide between two grids of metallic holes (aa =

20mm). (b) Rectangular waveguide lengtha and heightb. (c) Equivalent circuit
of the waveguide withY is the surface admittance andY is the admittance of
the magnetic wall inx = 0. (d) Diagram of continuity conditions.

Thus, one can place the second metal surface (perfect electric
conductor) in one of these planes without disturbing the fields.
The distance between these two planes is fixed so one can
deduce the angle of incidence as

(36)

In order to define this angle, it is necessary that the term between
brackets be less than one, and one must have

(37)

The distance between two metallic surfaces must be larger than
the half-wavelength so that the conditions are satisfied. As the
electric field is directed along to, one can place a metallic
plane perpendicular to this direction without disturbing the elec-
tromagnetic field, in a plane of constant. If one places two
planes at and , in addition to the two planes already
placed at and , one forms a rectangular metallic
waveguide [see Fig. 7(b)]. The addition of three metallic planes
does not modify the structure of the fields inside the waveguide,
which are given by the reflection and transmission of the factors
[22].

The propagation in the guide is in the-direction and one
notes that, if the electric field is perpendicular to this direction,
the magnetic field has, on the other hand, a longitudinal compo-
nent. With this condition, one can say that the mode is TE. The
propagation constant along the guide is defined by thedepen-
dence of the fields

(38)

where is the guided wavelength.
Recently, 2-D periodic structures have attracted considerable

attention in the literature, though often under the new name
of “photonic-bandgap (PBG) structures [23]. Experimental
data are compared with scattering parameter calculated data

on the basis of suitable form of the 2-D Helmholtz equation
for metallic propagation media [24]. Experimental and the-
oretical study of frequency-selective coupling properties of
waveguide-based structures patterned in a metallic photonic
crystal is given in [25]. A rigorous analysis is presented for the
guiding of wave by a 2-D periodic impedance surfaces [26].
The approximation of a periodic structure by an impedance
surface had been successfully employed for the study of 1-D
periodic structures [27], and this work can be considered as an
extension of the earlier work to the 2-D case.

In this paper, a novel technique in microwave circuit design is
to build an isolation screen using metallic holes, which are peri-
odically arranged in a 2-D grid. Using this approach, the wave-
guide is established between two grids of periodically arranged
metallic plates, as shown in Fig. 7(a), where these metallic plates
act as a continuous wall. The waveguide is limited between

and and, thus, it can be considered a homoge-
neous waveguide, which has a straight section , and short
circuit at , and the same consideration for the negative di-
rection . Let us suppose the electric field at levelis equal
to for . The magnetic field on the right-hand side can
be deduced in the same way ason the left-hand side
can be deduced. The equation of the continuity for the-field is
applied on and, therefore, it permits the determination of the
dispersion equation. For the waveguide that has a short circuit at
the distance and directed to the load, one can write
and .

To examine the continuity conditions at the crossing of the
surface, let us take the general case, which is a current surface

(39)

with (40)

The continuity conditions are verified in Fig. 7(c). The arch
covered by is not a short circuit, but, in the general case,
an impedance. Let us take again the problem of Fig. 7(a). The
method presented above allows the equivalent circuit shown in
Fig. 7(b). The orientations of and are now different. The
continuity of is expressed, therefore, by, .

(41)

(42)

where th is the admittance of an open circuit
at a magnetic wall in , and is the surface admittance of
the periodically arranged metallic holes.

The propagation in the guide is in the-direction, and one
notes that if the electric field is perpendicular to this direction,
the magnetic field has a longitudinal component. Consider the
transverse resonance for the TE mode. Substituting the admit-
tance of electric mode TE in (42), one obtains

th (43)

Put ( is the imaginary part of the admittance
surface, which depends on the incidence angle), where the as-
sociated transverse propagation constant in the metallic holes
arranged periodically is given by

and
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Fig. 8. Magnitude of surface impedanceZ for eight metallic holes cascaded
in a periodic guide as a function of the number of modes with� � 0, f =
10 GHz, and trial functions(p) = (++10; � � � 20;— 40;��50).

Therefore, the equation of dispersion becomes

(44)

where , , and the propagation
constant in the -direction for a waveguide that is presented in
Fig. 7(a) can be defined as

(45)

Considering the boundary conditions, the TE field can be
written as

(46)

VIII. N UMERICAL RESULTS AND DISCUSSIONS

To test the convergence behavior of the technique, the magni-
tude of the surface impedance as a function of the number
of modes and trial functions has been studied for square and
truncated square slabs in order to optimize a number of them.
Fig. 8 illustrates the convergence magnitude of the surface
impedance for the structure shown in Fig. 1 in case of
a TE mode for eight square plates in cascade as a function of
number of modes. It can be noticed that 40 trial functions
and 40 modes are sufficient to give good convergence. This
model is applicable by using five accessible modes since the
results of five accessible modes give the same results as more
than five, as shown in Fig. 9. The dimension parameters of the
structure are mm, the incident angle is , and the
length of the square metallic slabs is mm.

The convergence magnitude of the surface impedance
for the truncated square slabs for eight plates in cascade in the
TE mode as a function of number of modes is also treated in the
same manner. The convergence becomes good for 40 modes and
40 trial functions at the level of the first discontinuity and ten
trial functions at the level of the second discontinuityfor five
accessible modes. On the other hand, for the truncated square
slabs, the dimension parameters of this structure are mm,
incident angle , and the dimensions of one metallic slabs

Fig. 9. Magnitude of reflection coefficientS for eight metallic holes
cascaded in a periodic guide as a function of the frequency with� � 0, p = 40,
andn = 40 for (++3;— 5; ��11) accessible modes.

Fig. 10. Imaginary and real parts of the surface impedance for eight metallic
holes cascaded in a periodic guide for the geometry of square and truncated
square approaches versus frequency with� � 0, p = 40, p = 10, p = 40,
andn = 40 (square approach — and truncated square approach���).

are mm, and mm. The same dimensions,
trial functions, accessible modes, and number of modes will be
used in Section IX.

A comparison between the imaginary and real part of the
surface impedance of square and truncated square slabs
in a periodic guide for the same surface are presented in
the following figures. The presentation of the imaginary and
real part of the surface impedance for the eight ranges of the
metallic holes in cascaded Fig. 1, which are approximated by
the square and truncated square slabs, is presented in Fig. 10
for TE modes. The results obtained for the imaginary part of
the surface impedance of the eight slabs have approximately
the same values for the two approaches and they increase
when the frequency is increased and the real part of the surface
impedance are equal to zero for the two approaches. The eight
ranges in cascade in a periodic guide are sufficient to obtain
good isolation. The magnitude of the reflection coefficient

and for TE modes versus the operating frequency
are plotted in Fig. 11 for eight metallic slabs in cascade in
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Fig. 11. Magnitude of reflection and transmission coefficients for eight
metallic holes cascaded in a periodic guide for the geometry of square and
truncated square approaches versus frequency with� � 0, p = 40, p = 10,
p = 40, andn = 40 (square approach —, and truncated square approach
���).

Fig. 12. Imaginary part of surface admittance for eight metallic holes disposed
in cascade in a periodic guide versus the frequency for an incident angle (� �

0— and� � 90 � ��).

a periodic guide. The comparison shows that the magnitude
of the reflection coefficient increased when the frequency in-
creased and, on the other hand, the transmission coefficient in-
creased with frequency. From this result, the isolation is satis-
fied for replacing the continuous structure by the metallic holes
arranged periodically (Fig. 1) for frequencies less than 50 GHz.
For this domain, the imaginary part of the surface admittance is
plotted for the incident angles of 0and 90, as in Fig. 12. The re-
sults obtained for the imaginary part of the surface admittance of
the eight slabs are approximately the same values for the two in-
cident angles. Also, the comparison between the reflection coef-
ficient for the two incident angles gives less than 1 dB in that do-
main. The calculation of the dispersion curve in the waveguide,
which is built from the metallic holes arranged periodically, is
presented in (44). This equation give the surface admittance that
is dependent on the constant of propagation in the-direction

and the free-space number ; for this reason, Fig. 13 il-
lustrates the imaginary part of surface admittanceas a func-

Fig. 13. Variation of the imaginary part of the surface admittance for eight
metallic holes disposed in cascade in a periodic guide with the incident angle
� , which present the relation of the constant of propagation� with k inside
the waveguide design between two grids of periodically arranged metallic holes,
as in Fig. 7(a).

Fig. 14. Magnitude of dispersion curve for geometry of Fig. 7(b)��� and
Fig. 7(a) — versus frequency.

tion of . In this figure, the amplitude of the imag-
inary part of the surface admittance increased with .
From (45), the magnitudes of the dispersion curve for Fig. 7(a)
versus the operating frequency is plotted in Fig. 14. The disper-
sion curves represent the propagation constants, and the cutoff
frequencies of the waveguide for the fundamental mode. Also in
this figure, the dispersion curves represent the propagation con-
stant for a rectangular waveguide [see Fig. 7(b)], which has the
same proportion (dimensions that verify the condition (37) for
the incidence angle). The comparisons between the two curves
give approximately the same values, which allows one to build a
waveguide from the metallic holes arranged periodically. Fig. 15
shows the magnitude of transmission coefficient obtained in the
theoretical and experimental case for the first propagating mode
in the waveguide, which is made up between two grids of pe-
riodically arranged metallic plates [see Fig. 7(a)]. By consid-
ering an equivalent waveguide of width cm, the di-
mension parameters of the theoretical study are mm and
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Fig. 15. Magnitude of transmission coefficient for geometry of Fig. 7(a) versus
frequency (theoretical — and experimental���).

Fig. 16. Variation of the TE field for geometry of Fig. 7(a) for the fundamental
mode (theoretical���, experimental���, and theoretical effective width —).

mm, and the experimental study are mm and the
diameter of wires mm. The cutoff frequency in both
cases is conforming, but this frequency does not correspond to
a classic waveguide, which has the same width. Fig. 16 depicts
the magnitude of the TE field theoretically and experimen-
tally for the dominant mode inside the waveguide, which
is built from the metallic holes, arranged periodically. The di-
mension parameters are as noted above. The electric field does
not begin from zero on the metallic holes because of the values
of the surface admittance. For this reason, Fig. 16 shows the
magnitude of the electric field, which gives the effective width;
this width corresponds to the cutoff frequency in Fig. 15.

A comparison between the reduced transfer impedance mag-
nitude of circle, square, and truncated square cross sec-
tions in a rectangular guide for the same surface are presented
in Fig. 17. A study was realized in order to justify the pro-
posed suggestion. The dimension parameters of the structure
are cm, the length of the square metallic plates is

mm, and for the truncated square metallic plates is
mm and mm (the diameter of the circle that

Fig. 17. Magnitude of reducedZ for a circle, square, and truncated square
metallic obstacle in a rectangular guide versus frequency with: circle diameter
D = 2 mm,b = 1:77 mm for square, andb = 1:27 mm andd = 0:3 mm for
a truncated square for TE modes.

has the same surface is mm). For this structure, it can
be noticed that ten trial functions for all discontinuity, and 25
modes are sufficient to give good convergence. The dependence
of the magnitude of the transfer impedance versus frequency for
the TE mode of the three structures is shown in Fig. 17. From
this figure, one can notice that the three curves have the same
shape and approximately the same values for circular and trun-
cated square forms. A very good agreement with the literature
results given in [28] is demonstrated. In a periodic waveguide,
the accuracy of the analysis is demonstrated by a comparison
between theoretical results and experimental ones for via-holes
with a circular cross section of the same surface [29].

IX. CONCLUSIONS

The problem of arbitrarily incident plane-wave scattering
from strip structures of thick conducting plates arranged with
2-D periodicity has been examined in this paper. The square
approximation, as well as truncated square approximation
of circular cross sections has been used in this study. The
impedance of cascaded screens and the reflection coefficient
was calculated using the multimodal variational method for
both the TE- and TM-polarized incident electric fields. The 2-D
periodic strip of holes described in this paper can be used for
the purpose of designing new microwave guiding structures. A
transverse resonance method has been applied in order to solve
this problem. A fast rate of convergence with an increasing
number of modes and trial functions has been demonstrated
for TE modes of the two cases. The numerical results of the
two cases have been compared with each other. The conclusion
drawn from this investigation is that the two uses of the wave-
guide mode of square metallic plates screen or truncated square
metallic plates exhibit the same performance concerning their
reflection coefficient. The best surface impedance was obtained
in the case of a cascaded discontinuities configuration of the
waveguide. The given close analysis of periodically arranged
metallic holes showed that this arrangement can be used for the
design of new microwave waveguide structures.
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